
Using Context and Provenance
to defend against USB-borne attacks

Tobias Mueller
mueller@informatik.uni-hamburg.de
University of Hamburg, Germany

Ephraim Zimmer
ezimmer@informatik.uni-hamburg.de
University of Hamburg, Germany

Ludovico de Nittis
denittis@gnome.org

GNOME

ABSTRACT
Today’s readily available security measures to defend one’s comput-
ers against malicious USB devices either show popups that require
the user to allow each interaction, or they use identity-based pe-
ripheral devices attachment rules to allow or deny interaction with
the new USB device, which again involves the user. In this paper,
we propose a novel strategy for defending against USB attacks with
the main goal of not involving the user.

For making the security relevant decision, we take both context
of the user’s session and provenance of the security relevant event
into account. That is, we assume that the user cannot plug a device
into their machine when they are not present, e.g. when they have
left their computer. We infer that the state of the lock screen relates
to the presence of the user and do not allow new USB devices
when the screen is locked. Further, we deflect traditional BadUSB
attacks by taking the provenance of dangerous keystrokes into
account when making an automated security decision. We extend
the same idea to other security relevant contexts, such as network
re-configuration.

To substantiate our claims, we identify two classes of USB-borne
attacks: driver exploitation and user emulation. While the first
exploits could and can be prevented with secure coding and run-
time mitigations, the second does not circumvent bugs in code
but rather masquerades a device as another. We also investigate
real-world usage of USB and present data which shows that we
can expect users to have a single keyboard. Consequently, we in-
crease protection against said masquerading attacks by filtering
keys deemed dangerous or preventing security relevant actions if
the keystroke originated from a newly attached USB device. We
present an implementation of our filter for both GNU/Linux and
Microsoft Windows.

CCS CONCEPTS
• Security and privacy → Usability in security and privacy;
Operating systems security; Hardware attacks and countermeasures;
• Human-centered computing→ Empirical studies in HCI .

KEYWORDS
USB attacks, usability, usable security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES ’19, August 26–29, 2019, Canterbury, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7164-3/19/08. . . $15.00
https://doi.org/10.1145/3339252.3339268

ACM Reference Format:
Tobias Mueller, Ephraim Zimmer, and Ludovico de Nittis. 2019. Using Con-
text and Provenance to defend against USB-borne attacks. In Proceedings
of the 14th International Conference on Availability, Reliability and Security
(ARES 2019) (ARES ’19), August 26–29, 2019, Canterbury, United Kingdom.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3339252.3339268

1 INTRODUCTION
The Universal Serial Bus (USB) is a very popular standard for inter-
facing with external devices. It is in widespread use and thus ex-
poses a compelling attack surface [17, 23, 26, 27, 36]. In fact, famous
attacks such as “Stuxnet” were delivered via USB [13]. Without
a fundamental change in the concept and infrastructure of USB,
defences against USB-borne attacks can arguably not reach full
coverage [36]. The reasons are manifold. Research by Nohl and
Lell [27] showed, for example, that USB device controller is not
authenticated by an operating system, but only identified with in-
formation that is provided by the device controller itself, which
means a device can identify itself as several different device types
and even change the device type while staying plugged in. So a
harmless looking but specially prepared USB mass storage device
can re-identify itself as a new keyboard to the operating system at
any time and issue key combinations and commands, which could
infect the machine where the device is plugged in. Additionally,
the device controller of a benign USB device is generally not pro-
tected against reprogramming, which means an infected machine
can easily reprogram any USB device that is connected, even with-
out leaving any sign to a user. These two attack scenarios alone
already establish a devastating infection and spreading strategy of
any kind of malware and are inherent to the USB infrastructure
and concept. Although various defences have been proposed in the
past [2, 12, 14, 16, 33, 34] in order to mitigate these attack scenarios,
none of them have reached widespread acceptance, nor have been
generally available as a built-in mechanism in any operating system
of the user.

This paper describes the design and Open Source implemen-
tation of a baseline mitigation technique against attacks coming
from malicious USB devices, which follows Security-by-Design pat-
terns [11] and thereby minimises the need of user interaction as
much as possible while making security and trust relevant deci-
sions regarding USB devices. This approach results in a more usable
defence mechanism and can directly be integrated into the USB
stack of all operating systems. By tightly integrating our protection
mechanism, stronger protection capabilities and a better coverage
can be achieved compared to existing tools, as no additional pro-
tection mechanism has to be installed and configured by the user
and the integrated protection mechanism is active and running as
early as possible during the system startup.

https://doi.org/10.1145/3339252.3339268
https://doi.org/10.1145/3339252.3339268

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Tobias Mueller, Ephraim Zimmer, and Ludovico de Nittis

In Sect. 2 we provide background knowledge about USB. Sect. 3
provides a classification of USB-borne attacks in order to derive ba-
sic attack principles and structural problems and misconstructions
of USB. This includes deduction of typical real-life usage of USB
devices in order to prevent or at least exacerbate atypical USB de-
vice behaviour. In Sect. 4 and Sect. 5 follows our main contribution,
the design and open source implementation of an non-intrusive
baseline defence mechanism. Thereby we structurally mitigate un-
sophisticated USB-borne attacks that aim for defence-less systems.
In Sect. 6 we give an overview of other approaches on USB pro-
tection mechanisms. This paper concludes with a discussion in
Sect. 7.

2 BACKGROUND
This section describes the main properties of USB as well as the
preliminaries of our defence mechanism.

2.1 Universal Serial Bus
USB was designed to standardise the connection of peripherals like
keyboards, printers, disk drives etc. to personal computers, allowing
them to communicate as well as supplying electric power [3, 10].
A computer’s USB port can be extended with a “hub”, which is a
special USB device and can accept multiple other USB devices. USB
allows devices to be composed of several functions which can be
thought of as services provided to the user, e.g. mass storage or
keyboard. A USB device can be compound or composite in order to
implement multiple functions. This allows users to use only one
physical device, but get multiple functionalities. An example is a
cordless input arrangement consisting of a keyboard and a mouse
with only one physical plug to be inserted into the computer. A
compound device contains an internal hub to which other internal
devices are then connected, each receiving its own address, which is
used for the subsequent communication over the bus. A composite
device has only one address on the bus but multiple interfaces,
one for each provided function. Either way, when a USB device
is attached to a host, the operating system enumerates the new
device. That process causes the device to send either one or a set of
interface descriptors which represent the protocol of the messages
the device expects and what functions it provides. The operating
system uses this information to load the appropriate driver for each
interface, sets its configuration accordingly and then the USB device
can start its normal operation.

A recent analysis of all USB specifications including USB 3.x
shows, that security has not been taken into consideration [36].
In fact, the USB consortium considered ensuring the security of a
USB device a problem of the user [39]. This has changed with the
relatively recent specification of USB Type-C Authentication [38]
which uses a Certificate Authority Model comparable to the one
used for TLS in order to authenticate certain certified USB devices.
This specification has neither reached widespread adaption nor
does it effectively protect against USB-borne attacks, as it does not
include the firmware during the verification process [36].

2.2 USB as Attack Vector
USB’s versatility leads to a worrying problem: because different
device classes use the same connector type, one device can mas-
querade as benign device to the user but actually identify as another
device to the operating system. This identification to the operating
system can even be changed at any time while the USB device is
plugged into a host. USB allows a de-registration and re-registration
without the need to physically unplug the device. The device then
gains different or additional capabilities, which the user did not
expect. This has been demonstrated multiple times in the past, e.g.
through the arguably most prominent attack coined “BadUSB” [27].

In order to turn one device type into another, a USB controller
chip can be reprogrammed. A lot of controller chips, like the ones
used for mass storage devices (or “thumb drives”), have no protec-
tion from such reprogramming [16, 27].

With such a reprogrammed device, it is for example possible to:

• Transform a USB stick into a computer keyboard and issue
commands on behalf of the logged-in user [27].

• Transform a USB stick into a keylogger and extract pass-
words typed in by the user [24, 32].

• Transform a USB stick into a network card and change the
DNS setting to redirect traffic [18].

As USB can be used to attach pretty much any device to the
computer, it can be used to interact with many of the installed de-
vice drivers. Those drivers are often of questionable quality, which
increases the risk of successful attacks [8, 9, 15]. At the time of writ-
ing more than 250 CVEs are assigned for issues revolving around
USB.1

Academia has investigated the phenomenon of USB-borne at-
tacks. Nissim et al. identified 29 types of USB-based attacks [26].
Ranging from the oldest and most famous Rubber Ducky2, that
emulates a keyboard and injects a pre-loaded keystroke sequence,
to the more recent and sophisticated like the TURNIPSCHOOL3,
that provides short range RF communication capability to software
running on the host computer.

2.3 USB as Trust Anchor
The typical usage of USB devices breaks down what usually is con-
sidered as trust barriers from a security point of view. The host
machine of a user enjoys special protection by all kinds of different
security mechanisms and users are trained to pay special attention
to the security of their machines. These efforts are necessary, be-
cause the host of a user constitutes a trust anchor. Once the own
machine is infected, most if not all security mechanisms can be
subverted. So several barriers are build to protect this trust anchor.
USB however is not considered a potential security threat, as re-
search by Tischer et al. [37] has shown. They dropped nearly 300
infected USB sticks outside of a parking lot and monitored, how
many USB sticks have been picked up and connected to a computer
by unwitting people. The authors estimated a success rate of 45-
98% with the first connected drive that called home in less than six
minutes.

1cf. https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=usb
2https://github.com/hak5darren/USB-Rubber-Ducky
3http://www.nsaplayset.org/turnipschool

https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=usb
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=usb
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=usb
https://github.com/hak5darren/USB-Rubber-Ducky
http://www.nsaplayset.org/turnipschool

Using Context and Provenance to defend against USB-borne attacks ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Consequently, it can be concluded, that the USB ecosystem is
considered part of that trust anchor too, even though a USB device
might potentially be under control of an attacker or an USB device
owned by a user is plugged into a machine, that might potentially
be under control of an attacker.

2.4 Security-by-Design
Research has shown that users tend to cognitively dismiss pop-
ups [6]. The authors further suggest that “pop-ups are similar to
annoying or rude colleagues who interrupt one’s current task and
insist on interaction” [6] and that a security solution should try
to “not interrupt the user while the user is engaged in an ongoing
task” [6]. This is in line with a study showing that users go to great
length, even putting their computer at risk, in order to perform
a task [30]. The reasons, which prevent users from understand-
ing security warnings are manifold [41], among which the lack of
integration with the existing metaphors of the desktop GUI has
been identified as a problem [31]. Likewise, users and their under-
standing of security relevant dialogues was investigated with the
insight that interrupting a user while performing a task is detri-
mental to getting an informed decision, also, because users either
just uninstall or disable the security software or get habituated to
the prompts [29]. Security software needs a user centred design as
well as knowledge about how users will actually use the designed
solution [1]. Successful security software should “design security
into all of an application’s layers (in particular, its upper layers)”
in order for security to “become implicit and hence much more
user-friendly” [7]. It is recommended to “seek ways to extract and
use as much accurate information as possible from a user’s normal
interactions with the interface” in order to align security and us-
ability [40]. We work to that end by inferring whether the user is
present and infer whether the user’s mental model includes being
able to attach a new USB. This approach is supported by the insight
that users rarely interact with a computer system to perform a se-
curity task [5]. Rather, they have a primary goal such as socialising
with their friends, writing a document, or sending files. As such,
any interaction the user has to perform to fulfil a secondary task,
such as authorising a new USB device, distracts from the primary
task and is recognised as annoyance [6].

We note that is has been argued that “taking the end user out of
the [security] loop does not solve the problem” [5]. However, we do
not aim for maximising protection, but for maximising protection
for most users in most circumstances. To that end, we acknowledge
that our approach does not protect against a sophisticated and
targeted attack.

3 ATTACKING MACHINES VIA USB
In this section we first explain the underlying threat model, which
will be considered throughout the rest of the paper. Subsequently,
we present our findings regarding the factors that enable USB-borne
attacks.

3.1 Threat Model
For this work we assume that the host operating system can be
exposed to newly attached USB devices at any time. Note that
this carefully excludes the phase in which the operating system is

not yet fully booted, i.e. the BIOS or early boot phase. We further
assume that the host operating system is not actively malicious, e.g.
that the drivers for USB devices were not written for the purpose of
allowing exploitation from a devices attached via USB. Rather, we
assume that exploitability of drivers stems from mistakes during
implementation. USB devices, on the other hand, can behave in any
way on the protocol layer which defines how a host and a device
communicate. However, we exclude misbehaviour on the lower two
layers of the USB protocol, which are the physical layer responsible
for the electrical specifications and the link layer responsible for,
e.g. addressing [3, 10]. Hence, we exclude attacks working on the
electrical level, e.g. working with too high voltages4.

Our model allows for an attacker to modify the functionality as
well as the appearance of a USB device and physically plug it into a
victim’s machine by themself or by tricking the victim to physically
connect the malicious USB device to their machine.

3.2 Classification of USB based Attacks
The phenomenon of USB-borne attacks has been investigated in
the past [26, 36]. For our purposes and in accordance with our
threat model, we classify attacks via the USB as either exploiting a
vulnerable driver or simulating user behaviour.

Our classification is deliberately simple to allow the deduction
of basic principles, which need to be deployed in order to mitigate
USB based attacks.

3.2.1 Vulnerable Driver. This class of attacks is made possible by
insecure coding and can have devastating results if the compro-
mised driver lives in kernel-space. Although USB drivers can be
written in user-space, the majority of drivers, especially generic
ones, live in kernel-space. A malicious device can thus avail of the
whole operating system once it has exploited a driver [23].

We note that this class can be eliminated by isolating drivers,
e.g [8, 9, 15], but popular operating systems such as Windows or
GNU/Linux do not follow a micro-kernel design, which does not
make isolation of drivers impossible, but harder to deploy.

3.2.2 Simulating User Behaviour. This class of attack involves a
device with different capabilities than the user expects. Instead of
exploiting vulnerable code, the device exploits user expectation.
For example, the BadUSB attack relies on the user expecting a mass
storage device but the device is acting as a keyboard. This attack has
come in various flavours, including devices which act as a network
card and then wiretap all connections of the machine; even when
the screen is locked. Note that no vulnerable code of the operating
system is exploited as the attack works on a higher level. Securing
single layers rather than cross-layer has been identified as limiting
the usefulness of protection mechanisms [36].

3.3 Structural Problems
Several areas can be identified, which enable a malicious USB device
to become a problem.

3.3.1 USB is Always On. The USB interface of a computer is con-
stantly enabled and waiting for a device connection. This means,

4e.g. USBKill: https://usbkill.com/

https://usbkill.com/

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Tobias Mueller, Ephraim Zimmer, and Ludovico de Nittis

Figure 1: Flowchart of USB device authorisation taking
provenance and context into of a newly inserted device into
account

that a USB device can be plugged in at any time and make the op-
erating system react, e.g. by loading the drivers for the device. This
behaviour constitutes a potential security threat for two reasons.
First, the number of drivers a malicious USB devices can pull is
large and so is the resulting attack surface. And second, any USB
device can be plugged into a machine while its user is not present,
which potentially leaves no obvious trace of the device to the user
after his or her return.

As a consequence, it can be argued that new (USB) devices should
only be allowed if the user is actually present. An active lock screen,
for example, might be a suitable indicator for the user not being
present. Some devices, however, should probably always work. In
particular, we might want to be able to activate new keyboards,
because an existing keyboard might break and if the newly plugged
in keyboard does not work, the user will be left locked out of
the session. This problem might be solved by some logic such as
“only one external keyboard shall be allowed”. Furthermore, it is

unclear what other external devices should have privileges similar
to new keyboards. Accessibility devices, for example, might exist,
and should be treated separately as well.

3.3.2 USB Devices Could Function Differently than Expected. As
explained in Sect. 2.2, different device classes use the same con-
nector type and so one device can masquerade as benign device to
the user but actually identify as another device to the operating
system. This can either be accomplished by re-programming the
controller chip of a benign USB device or by altering the outer
appearance of an USB device in order to let it appear as another
device. In conjunction with the possibility of the USB infrastructure
to invoke a de- and re-registration initiated by the USB device itself
without the need of any user interaction such as a physical dis- and
re-connection, the identification to the operating system can even
be changed at any time while the USB device is plugged into a host.
The device then gains different or additional capabilities, which the
user did not expect.

3.3.3 USB Devices Should Just Work. Most of the design decisions
of the USB specifications base on the requirement Ease of Use, which
can be considered the most important impetus for the success of
USB. In particular, those design decisions include the following
according to Axelson [4]: One interface for many devices, hot plug-
gable, automatic configuration, and no user settings.

Those design decisions have led to the user’s desire and expecta-
tion, that USB devices just work as soon as they have been plugged
into their machine. This expectation makes it hard to design an
User Experience (UX) that makes USB-borne attacks harder.

3.3.4 USB is simple by design. Arguably, USB has been designed to
make it easy to implement. One manifestation is the lack of reliably
identifying a USB device [27]. The structure of serial numbers used
for device identification are not determined by the specification
and such a serial number is provided by the device alone when con-
necting to a machine [10]. This means each time, a device connects,
it can provide a different serial number. One exception is the speci-
fication of USB Type-C Authentication [38], which neither reached
widespread adaption, nor effectively protects against USB-borne
attacks (cf. Sect. 2.1).

In contrast, the interface connector Thunderbolt utilises cookies,
which are created by the host and stored in a Thunderbolt device
on first use [22]. This cookie can be provided by the device on
subsequent connections in order to re-identify the device as already
known device.

In the context of USB, such a concept of Trust on First Use cannot
reliably be established, where a device receives a token when it
is connected to a machine the first time and uses this token on
subsequent connections to re-identify itself as already known and
trusted device.

3.4 Data on USB Usage
Our proposed mitigation technique partially relies on some assump-
tions about typical real-life usage of USB devices in order to prevent
or at least exacerbate atypical USB device behaviour. For example,
when typically only one external keyboard is connected via USB,
then it is reasonable to reduce the functionality of all additional
keyboards and, e.g. filter special function keys. To substantiate

Using Context and Provenance to defend against USB-borne attacks ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Table 1: Distribution of USB Devices by class

≥ 1 ≥ 2 ≥ 3

Hub (I) 99.46% 94.02% 27.99%
Mouse 23.64% 0.27% 0.00%
Wireless 19.02% 2.45% 0.00%
Hub (E) 17.66% 2.17% 0.27%
Keyboard 13.86% 0.54% 0.00%
Camera 9.78% 0.00% 0.00%

these assumptions, we investigated the real-life usage of USB. To
get hold of data about how people use USB we have crawled a pop-
ular Pastebin service for output of Linux’ lsusb, a tool for listing
attached USB devices. We parsed the output and obtained a list of
all devices plugged in to the machine. We discriminate internal and
external USB hubs in order to get closer to the number of actual de-
vices a user has plugged in. In addition to hubs, we identify several
classes of devices which are of interested for our study, e.g. mice,
keyboards, or cameras. We have matched devices based on the data
available in that lsusb output which is vendor ID, product ID, and
“Product String Descriptor”. We used services such as the “The USB
ID Repository”5 or “Linux Hardware”6 to reconcile the data. Our
data set includes 368 samples from 2017 to 2019.

Our findings can be summarised as follows: The median number
of USB devices users have attached to their system is 2 with the
lowest being 0 and the highest 14.We found that all but one reported
a maximum of one keyboard. The only report of two keyboards
was due to a Logitech “G11/G15 Keyboard” which has a separate
USB device for “G keys”. We have accounted for wireless keyboards
by way of looking for popular “unifying receivers” and Bluetooth
receivers. In our data set, 19% (70 of 368) reports identified at least
one receiver, 2.7% (10) more than one receiver. The highest number
was three. We have manually investigated that report and identified
one Bluetooth receiver and two Logitech unifying receivers. We
guess that the machine had one receiver for a keyboard and one
for a mouse. Our data set reports that 9.8% (36) have at least one
camera attached. Unfortunately, the data does not show when the
device has been attached, e.g. after boot or when the session was
locked.

We note that our investigation of real-life USB usage has several
limitations. First, there is no way we can assure that the users up-
loading that listing to pastebin did not manipulate the data. Second,
it must be taken into account that the collected and analysed data
is biased towards malfunctioning systems, because the pastebin
service is rather used to exchange information when a system is
not working properly. And third, the sample size is rather small, so
our findings must not be understood as universal claims, but serve
as strong indicators.

4 UNINTRUSIVE DEFENCE MECHANISM
The attack surface of contemporary operating systems is unnec-
essarily high. Using a simple set of rules, it is possible to fend of
superficial attack attempts without involving the user. Existing
5https://usb-ids.gowdy.us/read/UD/
6https://linux-hardware.org/

defence mechanisms are either difficult to deploy or require user
interaction. In fact, a whole line of research suggests to make the
user decide whether a device should be authorised [14, 19]. Sim-
ilarly, commercial software vendors will show a popup on every
device the user attaches, e.g. G-Data7 or Kaspersky8.

The aim of this work is to show, how to increase the security
as much as possible without changing the existing UX at all. We
note that the result leads to a compromise in favour of usability.
Our approach while developing the mechanism was to iteratively
add as much security as is possible with the current UX before
implementing changes to the UX in order to increase the security
further. As the goal of this work is to gradually increase the cost of
an attack, i.e. it aims for preventing the trivial attack of just plugging
in a malicious device at any time. Once a protection mechanism
against that trivial attack is active, e.g. by only allowing USB devices
while the session is unlocked, we handle malicious devices inserted
at a later stage or a device that re-inserts itself after a certain time.

The steps we took in our iterative process were the following:
(1) “Always Block” and “Never Block” USB policies

In this first case we plan to add an entry to the Control Center
under the Privacy tab. This first step gives the user the option
and responsibility to disable the ability to attach new devices.
This step does not yet reach our goal of increasing the protection
capabilities without changing the UX, because not only would
the user have to manually activate or disable USB but also
because then new devices might not work although the user
expects them to.

(2) “Block only when locked” policy
The goal of this policy is to protect from attacks while the
session is locked. By offering this policy we expect to increase
the protection without the user noticing. Our argument is that
the user is not present and hence cannot attach any devices. We
would like to note that GNOME currently acts similarly when a
mass storage device is inserted while the screen is locked: The
filesystems contained on the device are not mounted in order to
prevent attacks stemming from maliciously crafted filesystems.
While conducting a small pre-study, we found a problem a user
faces with a “Block only when locked” or “Always block” policy:
If their existing keyboard ever turns out to be broken, they will
be locked out of the session without a way to enter a password
and get back in. To overcome this issue we handle input devices
(esp. keyboards) differently from other USB devices. In particu-
lar, we check if the newly plugged in USB keyboard is the only
input method available. If so, we allow it rather than blocking
the device.

(3) Show new but blocked USB devices on the lockscreen
Our threat model allows for the user coming back to their com-
puter after someone plugged in a malicious devices while the
session was locked. We need to let the user know that they have
a new device attached that is disabled and what the user can do
to have the device activated. This requires a prominent widget
in the lockscreen or after the user has unlocked their session
which explains that a device has been blocked, because that

7https://www.gdatasoftware.com/en-usb-keyboard-guard
8https://www.kaspersky.com/blog/badusb-solved/12539/

https://usb-ids.gowdy.us/read/UD/
https://linux-hardware.org/
https://www.gdatasoftware.com/en-usb-keyboard-guard
https://www.kaspersky.com/blog/badusb-solved/12539/

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Tobias Mueller, Ephraim Zimmer, and Ludovico de Nittis

device could re-set itself after it determined that the user has
returned. The concept of notifications on the lockscreen is well
established not only in the GNOME desktop environment but
also in mobile ecosystems for showing, e.g. new messages or
media player controls.

(4) Handle new input devices naïvely
So far the security could be increased without changing the UX,
e.g. the user did not notice the system behaving differently. Our
approach is to gradually introduce security features and tighten
them once they have been deployed. The goal of this step is to
thwart the classical BadUSB attack, which involves a keyboard
masquerading as another device, e.g. mass storage, with the
methods the operating system already provides. To reach the
goal, we lock the screen as soon as a new device with keyboard
capabilities is attached. We argue that the user knows the con-
cept of the lock screen already and that the notification about
the new device will make the user suspicious if a surprising
device is shown.

(5) Provenance at the keystroke-level
The goal of this step is to handle input devices more gracefully
and not lock the user’s session every time a new input device is
attached as shown in fig. 1. Once we have exhausted the options
for protection with the tools already available on the operating
system, we can increase the protection profile by introducing
new ways to deflect attacks. One way of achieving the set goal
is to investigate the input device before either authorising the
device or locking the screen. USB demands that an input device
describes itself by way of a report descriptor . That descriptor
identifies the keys an input device can press. We identify a
set of keys which are dangerous and could allow keyboards
which do not have the capability of pressing dangerous keys.
Unfortunately, certain hardware exists which claims to be able
to press all the keys of a commonly used keyboard, although
intend to only press a limited subset. Such a hardware is a
YubiKey which is used as a security token. The report descriptor
includes all regular keys although they promise to press modhex
keys only9.
In this step we introduce the concept of tracking the origin of
keystrokes and filter keys we deem dangerous. In particular,
we do not allow external keyboards to press Ctrl, Alt, or Super,
because those can be used to spawn a terminal and then launch
an attack.
In summary, the decision making process for a newly attached

USB device is based on context and provenance. Several conditions
are checked before making the decision to either block or allow the
new device (fig. 1).

Because we are aiming for reducing the impact on the UX and in
particular not locking the user out of their session if they are unable
to operate with their primary keyboard, we check whether the new
device is the only currently available keyboard in the system. In
that case an exception to the “block” protection level is made and
the keyboard will be authorised.

9cf. http://web.archive.org/web/20171116184919/forum.yubico.com/viewtopic.php?f=
6&t=96

5 IMPLEMENTATION
This section describes the modifications of the Linux environment
we needed to make in order to develop our protection mechanism,
although the concepts described in Sect. 4 can be applied to other
operating systems as well. In fact, we have taken a first attempt
of writing a prototypical implementation for Windows which we
make available10. For our target environment, we needed to modify
two sub-systems: First we needed to amend USBGuard to be able
to integrate into a running session and then we needed to change
the GNOME desktop to make use of the exposed functionality of
USBGuard. All our modification have been published for inclusion
into the relevant software packages and have either been included
already or are in discussion for inclusion for the next release.

5.1 Backend with USBGuard
As an existing software component with protection capabilities we
decided to build our mechanism around USBGuard. USBGuard is a
daemon listening on udev events for new USB devices and then, if
so configured, tells Linux to use a device. By using USBGuard we
benefit from its implementation of the lower level kernel interaction,
s.t. we did not need to re-implement that.

USBGuard uses two configuration files: usbguard-daemon.conf
and rules.conf. The former holds a few variables like Inserted-
DevicePolicy and ImplicitPolicyTarget, while the latter is a
file where it is possible to white- or blacklist single, or groups of,
USB devices.

When a new USB device is detected, USBGuard performs a few
sequential checks in order to decide whether a device should be
enabled:
(1) From the usbguard-daemon.conf the value of InsertedDevi-

cePolicy will be checked:
• If it is apply-policy it will go to the step 2.
• If it is block or reject the device will not be authorised or
removed. No further checks will be performed.

(2) The rules.conf file will be evaluated:
• If a rule matches the inserted USB device it will be applied.
No further checks will be performed.

• Otherwise it will go to the step 3.
(3) From the usbguard-daemon.conf the value of ImplicitPol-

icyTarget will be checked:
• If it is allow the device will be authorised.
• If it is block or reject the device will not be authorised or
removed.

On top of that, from the CLI/DBus there is a function called
applyDevicePolicy that can be used to override the decision that
USBGuard took after the three steps listed above.

USBGuard configuration can be accessed andmanipulated through
DBus. In order to integrate it into the user’s session, though, we
needed to be aware of configuration changes. Alas, no signals were
generated when a parameter was changed, making polling nec-
essary for getting the potentially updated configuration values.
Additionally, it was only possible to get and set the InsertedDe-
vicePolicy parameter rather than ImplicitPolicyTarget. With-
out being able to modify that configuration variable, we could not

10https://github.com/ageinpee/USB-FilterDriver

http://web.archive.org/web/20171116184919/forum.yubico.com/viewtopic.php?f=6&t=96
http://web.archive.org/web/20171116184919/forum.yubico.com/viewtopic.php?f=6&t=96
https://github.com/ageinpee/USB-FilterDriver

Using Context and Provenance to defend against USB-borne attacks ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Figure 2: GNOME Control Center USB protection entry

easily allow new USB device. We resolved these issues by contribut-
ing the necessary patches that are now merged and available in
USBGuard11.

5.2 Frontend with GNOME
Multiple GNOME components have been patched in order to insert
the actual USB protection logic and to offer an usable and minimal
UI. The components required for this project were:

• GNOME Control Center: we added an USB protection entry
in the privacy tab. From there the users will be able to choose
the desired protection level or completely disable it (fig. 2).

• Gsettings Desktop Schemas: an additional schemas has been
added under org.gnome.desktop.privacy so that we can
store the current protection level.

• GNOME Shell: we added a USB protection icon in the Shell
top right indicator so that users have a visual confirmation
that the protection is effectively active.

• GNOME Settings Daemon: this is were the actual protection
logic lives. We created a new daemon that syncs the USB-
Guard configuration with the schemas on Gsettings and also
it is the one that authorises new USB devices, using D-Bus.

We have published our modifications under a Free Software
license and proposed them for inclusion to the project12. We expect
the changes to be shipped with the upcoming major release of the
GNOME desktop (version 3.34).

6 RELATEDWORK
This section presents existing work that attempts to protect systems
against rogue USB devices. Those attempts have in common that
they empower the user to take the decision of whether to trust a
device.

In 2007, the Linux kernel gained the capability of authorising a
device before it is fully bound to a driver13. Since 2015, Linux can
authorise USB interfaces separately [20]. Currently available secu-
rity software packages for GNU/Linux to defend against attacks via
USB use this mechanism to conditionally allow USB devices. The
arguably most famous package is USBGuard14. It contains a dae-
mon running in user-space watching for udev events which then
11as commit 7cd1642a9f8b7cb0ca1ae15c8225912c329764b8
12https://gitlab.gnome.org/GNOME/gnome-settings-daemon/merge_requests/75
13https://lwn.net/Articles/241980/
14https://usbguard.github.io/

prompts the user for authorisation of a device. It has an optional
GUI which, interestingly enough, renders a subset of HTML when
displaying the device name. So a malicious device can use markup
like <h1>, , or newlines (0x0A) to influence the rendering of the
device on the screen. A different package is Devdef which prompts
the user for consent to let Linux load a new driver rather than
allowing a device [12]. This defence mechanism assumes that a
malicious device intends to exploits vulnerable driver code rather
than user expectation. In particular, once a driver has been loaded,
e.g. by a benign device, a malicious could re-use that driver. An-
other approach that requires user interaction is USBCheckIn [14]:
a physical box which the user needs to connect their input device
to. The device then poses a quest which the user has to solve on
the box itself. Similarly, SandUSB [21] requires the user to interact
with a custom physical box in order to make a USB device work.

To the best of our knowledge, ProvUSB [35] is the most advanced
description of a system to implement provenance-based security
decision for data coming via USB. It takes the provenance of data
on mass storage devices into account in order to provide a security
solution for high security environments. Unfortunately, the release
of the ProvUSB source code does not with a license which makes
adoption harder. We extend ProvUSB’s idea and apply it to other
security relevant domains such as keyboard events or network
configuration. Additionally, our focus is not high security environ-
ments but rather regular users’ systems. And most importantly, our
implementation has been released as Free Software which is about
to be included in one of the most popular GNU/Linux desktops.

Our mechanism makes the security decision without the user.
Such an automated system called USBlock has been proposed re-
cently [25]. It applies a heuristic to detect “abnormal keypress
sequences” and filters keystrokes based on their dynamics, i.e. the
speed at which keys are being pressed. This will also block benign
devices that are meant to type fast, such as a YubiKey which enters
a user’s password. In their work, they overcome this challenge
by whitelisting the affected devices. While this works for devices
known today, it does not scale for yet unknown devices. Our idea
is similar in that we classify certain key strokes as more dangerous
than others. Our idea is different, though, in that we take the prove-
nance and context of the key strokes into account. Our approach
does not require such a whitelist, unless the benign device needs to
send the keys that we have classified as malicious. We appreciate
that the problem has merely been shifted rather than fully solved.
Nonetheless, we claim that our approach delivers a more usable
system with higher protection capabilities and less false positives.
Additionally, we provide source code with a Free Software license
and have proposed it for inclusion into a major desktop system.

Other systems that attempt to defend against USB-borne threats
are virtualisation-based and offer strong protection capabilities in
expense for a changed UX, e.g. Qubes [28], Cinch [2], USBWall [19],
or GoodUSB [34]. The latter comes with a modified Linux kernel
and two user space daemons which decide whether a device is
considered to be good [34]. For a new USB device it spawns a new
virtual machine and observes how the VM reacts to the new USB
device. It also prompts the user to let them decide whether to accept
this new device. Another main reasons for preventing adoption is
the unclear license. While the source code of their programs and
modifications has been released, they are not available under a Free

https://gitlab.gnome.org/GNOME/gnome-settings-daemon/merge_requests/75
https://lwn.net/Articles/241980/
https://usbguard.github.io/

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Tobias Mueller, Ephraim Zimmer, and Ludovico de Nittis

Software license. USBFILTER [33] is system for inspecting packets
on the USB and matching policies against the observed traffic. It
could, for example, block SCSI write commands to pen drive to
prevent (over)writing data on an external drive.

Other systems related to security of USB devices are: FirmUSB
has a slightly different scope, namely to analyse firmware running
on a USB device and checking whether it is benign [16]. Unfor-
tunately, their software is not available as Free Software which
hinders adoption.

The commercial market has come up with various “Endpoint
Security” products15 which aim to prevent the use of compromised
USB devices that emulate keyboard behaviour. They generally dis-
play a popup when a new USB device has been connected and
ask to user to enter, e.g. a PIN from that newly attached device. If
the device does not have a physical keyboard (e.g. a YubiKey or a
presentation clicker) it is possible to show an on-screen keyboard
to manually enter the code with a mouse.

USB Type C authentication “has successfully pinpointed an ur-
gent need to solve the USB security problem, its flaws render these
goals unattainable” [36]. It will raise the bar for an attacker but
since the firmware is not part of the authentication process, it can-
not defend against certain classes of attacks. USB’s success also
draws from it’s availability which is arguably stemming from cheap
implementations. With USB Type C authentication, devices need to
put a secure module which keeps keys secret which increases the
price. In any case, users might still want to operate legacy devices
without such a chip and they deserve protection.

7 DISCUSSION
We have presented how existing approaches are either difficult
to deploy or comparatively hard to use. None of the protection
mechanisms is in widespread use. Arguably, a minimally invasive
method which requires as little user interaction as possible is easier
to deploy and thus increases the general protection level. We have
presented such a mechanism which takes context of the user’s
session and provenance of the potentially malicious USB event into
accountwhenmaking the security decision of allowing the device or
its events. By making an automated decision the mechanism cannot
afford false-positives, that is, rendering devices useless although
the user expects it to work. To that end, we detect when the user
is present, i.e. able to plug devices in and disable new USB devices
otherwise. When the session is unlocked, we take the provenance
of events from the USB device into account. Currently, we deny the
second keyboard in a system to press keys we consider dangerous,
e.g. Ctrl, Alt, Super. Once such a key is pressed, we inform the user
about blocked keys and inform them about ways to escalate the
privileges of the keyboard. We envision that once the system has
been a built-in part of a major desktop environment, more and
more provenance rules will be established. For example, a newly
attached USB network card must not override the system’s network
configuration unless it appears to be non-functional. Or a webcam
could only be allowed if the user has started an app that is able to
interface with such a device. We believe that combining the context

15e.g. Kaspersky: https://www.kaspersky.com/blog/badusb-solved/12539/, Comodo:
https://www.comodo.com/endpoint-protection/endpoint-security.php, or DeviceLock:
https://www.devicelock.com/products/

of the user’s session, e.g. which apps are running or which network
the user is connected to, and the provenance of system relevant
events, e.g. overriding network configuration, allows for making
many security relevant decisions without the user noticing.

Another strategy is to re-identify devices as best as we can,
well knowing that the resulting additional protection is marginal,
because it is not possible to reliably re-identify a device. But it does
arguably increase the protection if the attacker needs to guess the
serial number of the target device.

Because USB lacks a mechanism similar to Thunderbolt we can-
not reliably re-identify a device. This makes defending against
malicious devices more complicated.

We assume the legitimacy of our context and provenance rules
to be backed by real-life usage data of USB. However, our data set
has been collected from a highly biased source, i.e. we do not expect
an average user to publish their data on Pastebin and the ones who
do probably did so because of a malfunctioning machine.

We inferred that automated decision making without changing
the UX increases the protection level. However, we have only con-
ducted an early preliminary study and a more formal evaluation
is needed to assert whether the goal of protecting users without
them knowing could be reached.

REFERENCES
[1] Anne Adams andMartina Angela Sasse. 1999. Users Are Not the Enemy. Commun.

ACM 42, 12 (Dec. 1999), 40–46. https://doi.org/10.1145/322796.322806
[2] Sebastian Angel, Riad S. Wahby, Max Howald, Joshua B. Leners, Michael Spilo,

Zhen Sun, Andrew J. Blumberg, and Michael Walfish. 2016. Defending against
Malicious Peripherals with Cinch. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, Texas, USA, 397–414. https://www.
usenix.org/conference/usenixsecurity16/technical-sessions/presentation/angel

[3] Apple, Hewlett-Packard Inc., Intel, Microsoft, Renesas Corporation,
STMicroelectronics, and Texas Instruments. 2017. Universal Se-
rial Bus 3.2 Specification. https://www.usb.org/document-library/
usb-32-specification-released-september-22-2017-and-ecns

[4] Jan Axelson. 2009. USB Complete: The Developer’s Guide (4th ed.). Lakeview
Research, Madison WI.

[5] Gisela Susanne Bahr and William H. Allen. 2013. Rational Interfaces for Effec-
tive Security Software: Polite Interaction Guidelines for Secondary Tasks. In
Universal Access in Human-Computer Interaction. Design Methods, Tools, and Inter-
action Techniques for eInclusion (Lecture Notes in Computer Science), Constantine
Stephanidis and Margherita Antona (Eds.). Springer Berlin Heidelberg, 165–174.

[6] G. Susanne Bahr and Richard A. Ford. 2011. How and Why Pop-Ups Don’t Work:
Pop-up Prompted Eye Movements, User Affect and Decision Making. Computers
in Human Behavior 27, 2 (March 2011), 776–783. https://doi.org/10.1016/j.chb.
2010.10.030

[7] D. Balfanz, G. Durfee, D. K. Smetters, and R. E. Grinter. 2004. In Search of Usable
Security: Five Lessons from the Field. IEEE Security Privacy 2, 5 (Sept. 2004),
19–24. https://doi.org/10.1109/MSP.2004.71

[8] Silas Boyd-Wickizer and Nickolai Zeldovich. 2010. Tolerating Malicious Device
Drivers in Linux. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference (USENIXATC’10). USENIX Association, Berkeley, CA, USA,
9–9. http://dl.acm.org/citation.cfm?id=1855840.1855849

[9] S. Butt, V. Ganapathy, M. M. Swift, and C. Chang. 2009. Protecting Commodity
Operating System Kernels from Vulnerable Device Drivers. In 2009 Annual Com-
puter Security Applications Conference. 301–310. https://doi.org/10.1109/ACSAC.
2009.35

[10] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips. 2000. Uni-
versal Serial Bus Specification. https://www.usb.org/sites/default/files/usb_20_
20181221.zip

[11] Chad Dougherty, Kirk Sayre, Robert Seacord, David Svoboda, and Kazuya To-
gashi. 2009. Secure Design Patterns. Technical Report CMU/SEI-2009-TR-010.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9115

[12] Moritz Duge. 2016. Abwehr von BadUSB-Angriffen Mittels Kontrollierter Geräte-
Aktivierung. Bachelorthesis. HAW, Hamburg. http://edoc.sub.uni-hamburg.de/
haw/volltexte/2016/3430/

[13] Nicolas Falliere, Liam O Murchu, and Eric Chien. 2011. W32.Stuxnet
Dossier. https://www.symantec.com/content/en/us/enterprise/media/security_

https://www.kaspersky.com/blog/badusb-solved/12539/
https://www.comodo.com/endpoint-protection/endpoint-security.php
https://www.devicelock.com/products/
https://doi.org/10.1145/322796.322806
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/angel
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/angel
https://www.usb.org/document-library/usb-32-specification-released-september-22-2017-and-ecns
https://www.usb.org/document-library/usb-32-specification-released-september-22-2017-and-ecns
https://doi.org/10.1016/j.chb.2010.10.030
https://doi.org/10.1016/j.chb.2010.10.030
https://doi.org/10.1109/MSP.2004.71
http://dl.acm.org/citation.cfm?id=1855840.1855849
https://doi.org/10.1109/ACSAC.2009.35
https://doi.org/10.1109/ACSAC.2009.35
https://www.usb.org/sites/default/files/usb_20_20181221.zip
https://www.usb.org/sites/default/files/usb_20_20181221.zip
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9115
http://edoc.sub.uni-hamburg.de/haw/volltexte/2016/3430/
http://edoc.sub.uni-hamburg.de/haw/volltexte/2016/3430/
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

Using Context and Provenance to defend against USB-borne attacks ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

response/whitepapers/w32_stuxnet_dossier.pdf
[14] F. Griscioli, M. Pizzonia, and M. Sacchetti. 2016. USBCheckIn: Preventing BadUSB

Attacks by Forcing Human-Device Interaction. In 2016 14th Annual Conference
on Privacy, Security and Trust (PST). 493–496. https://doi.org/10.1109/PST.2016.
7907004

[15] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. 2009. Fault Isola-
tion for Device Drivers. In 2009 IEEE/IFIP International Conference on Dependable
Systems Networks. 33–42. https://doi.org/10.1109/DSN.2009.5270357

[16] Grant Hernandez, Farhaan Fowze, Dave (Jing) Tian, Tuba Yavuz, and Kevin R.B.
Butler. 2017. FirmUSB: Vetting USB Device Firmware Using Domain Informed
Symbolic Execution. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’17). ACM, New York, NY, USA, 2245–
2262. https://doi.org/10.1145/3133956.3134050

[17] Moritz Jodeit and Martin Johns. 2010. USB Device Drivers: A Stepping Stone into
Your Kernel. In 2010 European Conference on Computer Network Defense. Berlin,
Germany, 46–52. https://doi.org/10.1109/EC2ND.2010.16

[18] Samy Kamkar. 2016. PoisonTap - Exploiting Locked Computers over USB. https:
//samy.pl/poisontap/

[19] Myung Kang and Hossein Saiedian. 2017. USBWall: A Novel Security Mechanism
to Protect against Maliciously Reprogrammed USB Devices. Information Security
Journal: A Global Perspective 26, 4 (July 2017), 166–185. https://doi.org/10.1080/
19393555.2017.1329461

[20] Stefan Koch. 2015. Sicherheitsaspekte beim Anschluss von USB-Geräten. Masterthe-
sis. Universität Bayreuth, Bayreutch, Germany. https://epub.uni-bayreuth.de/
3048/ Ursprüngliche Abgabe als Masterarbeit: 01. Juni 2015, Informationsstand
dieser Überarbeitung: 25. November 2015, letzte Änderung vor Veröffentlichung:
23. Januar 2017.

[21] E. L. Loe, H. Hsiao, T. H. Kim, S. Lee, and S. Cheng. 2016. SandUSB: An Installation-
Free Sandbox for USB Peripherals. In 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT). 621–626. https://doi.org/10.1109/WF-IoT.2016.7845512

[22] Westerberg Mika. 2017. Thunderbolt Security Levels and NVM Firmware Up-
grade. https://groups.google.com/forum/#!topic/linux.kernel/bAygpgSiKuA%
5B1-25%5D

[23] Tobias Mueller. 2015. Framework for Fuzzing USB Stacks with Virtual Machines.
In INFORMATIK 2015, Douglas W. Cunningham, Petra Hofstedt, Klaus Meer,
and Ingo Schmitt (Eds.). Gesellschaft für Informatik e.V., Cottbus, 1901–1912.
http://dl.gi.de/handle/20.500.12116/2176

[24] Matthias Neugschwandtner, Anton Beitler, and Anil Kurmus. 2016. A Transparent
Defense Against USB Eavesdropping Attacks. In Proceedings of the 9th European
Workshop on System Security (EuroSec ’16). ACM, New York, NY, USA, 6:1–6:6.
https://doi.org/10.1145/2905760.2905765

[25] Sebastian Neuner, Artemios G. Voyiatzis, Spiros Fotopoulos, Collin Mulliner,
and Edgar R. Weippl. 2018. USBlock: Blocking USB-Based Keypress Injection
Attacks. In Data and Applications Security and Privacy XXXII (Lecture Notes in
Computer Science), Florian Kerschbaum and Stefano Paraboschi (Eds.). Springer
International Publishing, 278–295.

[26] Nir Nissim, Ran Yahalom, and Yuval Elovici. 2017. USB-Based Attacks. Computers
& Security 70 (Sept. 2017), 675–688. https://doi.org/10.1016/j.cose.2017.08.002

[27] Karsten Nohl and Jakob Lell. 2014. BadUSB - On Accessories
That Turn Evil. https://www.blackhat.com/us-14/briefings.html#
badusb-on-accessories-that-turn-evil

[28] Qubes OS. 2018. Using and Managing USB Devices. https://www.qubes-os.org/
doc/usb/

[29] Fahimeh Raja, Kirstie Hawkey, Pooya Jaferian, Konstantin Beznosov, and Kel-
logg S. Booth. 2010. It’s Too Complicated, So I Turned It off!: Expectations,
Perceptions, and Misconceptions of Personal Firewalls. In Proceedings of the 3rd
ACM Workshop on Assurable and Usable Security Configuration (SafeConfig ’10).
ACM, New York, NY, USA, 53–62. https://doi.org/10.1145/1866898.1866907

[30] Christian Seifert, Ian Welch, and Peter Komisarczuk. 2006. Effectiveness of
Security By Admonition: A Case Study of Security Warnings in a Web Browser
Setting. In)secure Magazine 1 (2006). https://doi.org/10.1.1.61.5696

[31] Jennifer Stoll, Craig S. Tashman, W. Keith Edwards, and Kyle Spafford. 2008.
Sesame: Informing User Security Decisions with System Visualization. In Proceed-
ing of the Twenty-Sixth Annual CHI Conference on Human Factors in Computing
Systems - CHI ’08. ACM Press, Florence, Italy, 1045. https://doi.org/10.1145/
1357054.1357217

[32] Yang Su, Daniel Genkin, Damith Ranasinghe, and Yuval Yarom. 2017. USB Snoop-
ing Made Easy: Crosstalk Leakage Attacks on USB Hubs. In Proceedings of the 26th
USENIX Conference on Security Symposium (SEC’17). USENIX Association, Berke-
ley, CA, USA, 1145–1161. http://dl.acm.org/citation.cfm?id=3241189.3241279

[33] Dave Tian, Nolen Scaife, Adam Bates, Kevin R. B. Butler, and Patrick Traynor.
2016. Making USB Great Again with Usbfilter. In Proceedings of the 25th USENIX
Conference on Security Symposium (SEC’16). USENIX Association, Berkeley, CA,
USA, 415–430. http://dl.acm.org/citation.cfm?id=3241094.3241127

[34] Dave Jing Tian, Adam Bates, and Kevin Butler. 2015. Defending Against Malicious
USB Firmware with GoodUSB. In Proceedings of the 31st Annual Computer Security
Applications Conference (ACSAC 2015). ACM, New York, NY, USA, 261–270. https:
//doi.org/10.1145/2818000.2818040

[35] Dave (Jing) Tian, Adam Bates, Kevin R.B. Butler, and Raju Rangaswami. 2016.
ProvUSB: Block-Level Provenance-Based Data Protection for USB Storage De-
vices. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’16). ACM, New York, NY, USA, 242–253. https:
//doi.org/10.1145/2976749.2978398

[36] J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and K. Butler. 2018. SoK: "Plug
& Pray" Today – Understanding USB Insecurity in Versions 1 Through C. In 2018
IEEE Symposium on Security and Privacy (SP). 1032–1047. https://doi.org/10.1109/
SP.2018.00037

[37] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori, E. Bursztein, and M. Bailey.
2016. Users Really Do Plug in USB Drives They Find. In 2016 IEEE Symposium on
Security and Privacy (SP). 306–319. https://doi.org/10.1109/SP.2016.26

[38] USB 3.0 Promoter Group. 2016. Universal Serial Bus Type-C Authentication
Specification. Online. (March 2016). https://www.usb.org/document-library/
usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
Revision 1.0.

[39] USB Implementers Forum. 2014. USB-IF Statement Regarding USB Secu-
rity. http://web.archive.org/web/20160331174300/https://www.usb.org/press/
USB-IF_Statement_on_USB_Security_FINAL.pdf

[40] Ka-Ping Yee. 2004. Aligning Security and Usability. IEEE Security Privacy 2, 5
(Sept. 2004), 48–55. https://doi.org/10.1109/MSP.2004.64

[41] Z. F. Zaaba, S. M. Furnell, and P. S. Dowland. 2014. A Study on Improving Security
Warnings. In The 5th International Conference on Information and Communication
Technology for The Muslim World (ICT4M). 1–5. https://doi.org/10.1109/ICT4M.
2014.7020633

https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://doi.org/10.1109/PST.2016.7907004
https://doi.org/10.1109/PST.2016.7907004
https://doi.org/10.1109/DSN.2009.5270357
https://doi.org/10.1145/3133956.3134050
https://doi.org/10.1109/EC2ND.2010.16
https://samy.pl/poisontap/
https://samy.pl/poisontap/
https://doi.org/10.1080/19393555.2017.1329461
https://doi.org/10.1080/19393555.2017.1329461
https://epub.uni-bayreuth.de/3048/
https://epub.uni-bayreuth.de/3048/
https://doi.org/10.1109/WF-IoT.2016.7845512
https://groups.google.com/forum/#!topic/linux.kernel/bAygpgSiKuA%5B1-25%5D
https://groups.google.com/forum/#!topic/linux.kernel/bAygpgSiKuA%5B1-25%5D
http://dl.gi.de/handle/20.500.12116/2176
https://doi.org/10.1145/2905760.2905765
https://doi.org/10.1016/j.cose.2017.08.002
https://www.blackhat.com/us-14/briefings.html#badusb-on-accessories-that-turn-evil
https://www.blackhat.com/us-14/briefings.html#badusb-on-accessories-that-turn-evil
https://www.qubes-os.org/doc/usb/
https://www.qubes-os.org/doc/usb/
https://doi.org/10.1145/1866898.1866907
https://doi.org/10.1.1.61.5696
https://doi.org/10.1145/1357054.1357217
https://doi.org/10.1145/1357054.1357217
http://dl.acm.org/citation.cfm?id=3241189.3241279
http://dl.acm.org/citation.cfm?id=3241094.3241127
https://doi.org/10.1145/2818000.2818040
https://doi.org/10.1145/2818000.2818040
https://doi.org/10.1145/2976749.2978398
https://doi.org/10.1145/2976749.2978398
https://doi.org/10.1109/SP.2018.00037
https://doi.org/10.1109/SP.2018.00037
https://doi.org/10.1109/SP.2016.26
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
http://web.archive.org/web/20160331174300/https://www.usb.org/press/USB-IF_Statement_on_USB_Security_FINAL.pdf
http://web.archive.org/web/20160331174300/https://www.usb.org/press/USB-IF_Statement_on_USB_Security_FINAL.pdf
https://doi.org/10.1109/MSP.2004.64
https://doi.org/10.1109/ICT4M.2014.7020633
https://doi.org/10.1109/ICT4M.2014.7020633

	Abstract
	1 Introduction
	2 Background
	2.1 Universal Serial Bus
	2.2 USB as Attack Vector
	2.3 USB as Trust Anchor
	2.4 Security-by-Design

	3 Attacking Machines via USB
	3.1 Threat Model
	3.2 Classification of USB based Attacks
	3.3 Structural Problems
	3.4 Data on USB Usage

	4 Unintrusive Defence Mechanism
	5 Implementation
	5.1 Backend with USBGuard
	5.2 Frontend with GNOME

	6 Related Work
	7 Discussion
	References

